
1

2

(a) The diagram shows a complex plane with origin O.

Points P and Q represent non-zero complex numbers z and w respectively.

- (i) Write down the length of PQ in terms of z and w.
- (ii) Copy the diagram into your booklet. Construct point R that represents z+w.

 What type of quadrilateral is OPRQ?
- (iii) Prove that if |z+w|=|z-w|, the complex number $\frac{w}{z}$ is imaginary.
- (b) Given ω is a complex root of $z^3 1 = 0$;
 - (i) Explain carefully why ω^2 is also a complex root of $z^3 1 = 0$.
 - (ii) Prove that $1 + \omega + \omega^2 = 0$
 - (iii) Show the roots of $z^3 1 = 0$ on an Argand diagram.
 - (iv) Simplify $(1+\omega^2)^{2012}$ completely.
- (c) Suppose that $H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, for $n = 1, 2, 3, \dots$ So H(1) = 1, $H(2) = 1 + \frac{1}{2}$, $H(3) = 1 + \frac{1}{2} + \frac{1}{3}$, and so on.

Prove by mathematical induction that

$$n + H(1) + H(2) + H(3) + \cdots + H(n-1) = nH(n)$$

for $n = 2, 3, 4, \dots$

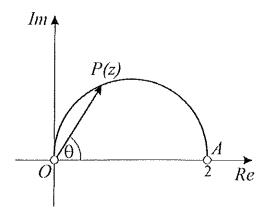
End of Assessment

Year 12 Mathematics Extension 2

HSC ASSESSMENT TASK 1

Term 4 Week 8 2011

Name:	
m 1	
Teacher:	


Wednesday 30th November 2011

Set by: VUL

- Attempt both questions.
- Both questions are of equal value.
- Marks may be deducted for insufficient, or illegible work.
- Only Board approved calculators (excluding graphic calculators) may be used
- Total possible mark is 30
- Begin each question on a new page.
- TIME ALLOWED: 45 minutes + 2 min reading time

Question 1	Marks
(a) Express $\frac{23-14i}{3-4i}$ in the form $a+bi$, where a and b are real.	2
(b) Find the two square roots of $-16 + 30i$.	2
(c) Let $w = -\sqrt{3} + i$.	
(i) Express w in modulus-argument form.	2
(ii) Show that $w^0 + 512i = 0$,	2
(d) Shade the region in the complex plane where $ z+2 \le 2$ and $-\frac{\pi}{6} \le \arg(z+3) \le \frac{\pi}{3}$ are simultaneously satisfied.	3

(e)

The diagram above shows the semicircular locus of the point P that represents the complex number z.

Let $\arg z = \theta$, as shown on the diagram.

(i) Copy the diagram and on it show a vector representing z - 2.

1

(ii) Explain why
$$\left| \frac{z-2}{z} \right| = \tan \theta$$
.

1

(iii) Show that
$$\arg\left(\frac{z-2}{z}\right) = \frac{\pi}{2}$$
.

2

2012 Year 12 Mathematics Extension 2 HSC Task 1 SOL UTIONS

Suggested Solution (s) Comments Suggested Solution (s) Comments Suggested Solution (s) Comments $ \begin{array}{cccccccccccccccccccccccccccccccccc$
(b) Let $-16+30i = (a+ib)^2$. $= \frac{125+50i}{2} = \frac{1}{5}$ By inspection, $(a,b) = (3,5)$ or $(-3,-5)$. So the two square roots are $3+5i$ and $-3-5i$. (c) (i) $w^2 = (2cis\frac{5\pi}{2})^4$ $= \frac{2^2cis\frac{5\pi}{2}}{2}$ $= 512cis\frac{5\pi}{2}$ $= 512cis\frac{5\pi}{2}$ (ii) $w^4 = (2cis\frac{5\pi}{2})^4$ $= \frac{2^4cis\frac{5\pi}{2}}{2}$ $= \frac{512(0-i)}{2}$ $= -512i$, so $w^4 + 512i = 0$. So wis a root of the equation $3^4 + 512i = 0$. Boundaries I Shading $1 = (2cis\frac{5\pi}{2})^4$ $1 =$
i l

2012 Year 12 Mathematics Extension 2 HSC Task 1 SOL UTIONS

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 2 a) i) $ \vec{r}0 = \vec{o}Q - \vec{o}P $ $= W - Z $ ii) OP QR is a parallelogram. iii) $Z + W \text{ od } Z - W$ represent the diagonals of quadrilateral op RQ. If $ Z + W = Z - W $ these diagonals are equal in length and op RQ is a rectangle of the continuation of the continua		b) i) The complex cube roofs of crity (ie, roots of $2^3 = 1$) Ore equally spaced $\frac{2\pi}{3}$ radians a point on the unit circle stanking with $2 = 1$. So if roots $20 = 1$ then $21 = \cos \frac{2\pi}{3} = (\cos \frac{2\pi}{3})^2 = 1$ or alternatively if $2^3 = 1$ $2^3 - 1 = 0$ (2-1) $(2^2 + 2 + 1) = 0$ $\therefore 2 = 1 \text{ or } 2 = \frac{-1 + \sqrt{-3}}{2}$ $= \frac{-1}{2} + \frac{\sqrt{3}}{2}$ if $U = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ $= (\cos \frac{2\pi}{3})^2$	
and $\frac{11}{2}$ = ki which is purely imaginary c) when $n = 2$ LHS = 2 + H(1) KHS = 2H(v) = 2 + 1 = 2 × (1 + \frac{1}{2}) = 3 = 2 × \frac{3}{2} = \frac{3}{2} \tag{5. Statement free when } n = 2 Assume statement free for n=k ie, k + H(1) + H(v) + H(3) + + H(k-v) = kH(k) when $n = k+1$ L.H.S = $k+1 + H(1) + H(2) + + H(k-1) + H(k)$ = $1 + k$, $H(k) + H(k)$ by assumption R.H.S = $(k+1) + (k+1) +$	<i>,</i>	$ i\rangle = i\rangle $	

= (k+1) H(k) + 1 : If three for n=ky,

= k H(k) + H(h) + 1 Since the for n=2

three for n=3,4,5...

True for all n>2 < Z